#include "sha256.h" #include // used for memset #include // used for stringstream #include // used for setfill and setw hmacsha256::SHA256::SHA256(const uint8_t* data, uint32_t length) { init(data, length); } void hmacsha256::SHA256::init(const uint8_t* data, uint32_t length) { digest_ = new uint8_t[32]; message_l_ = bit_len_ = 0; vars_[0] = 0x6a09e667; vars_[1] = 0xbb67ae85; vars_[2] = 0x3c6ef372; vars_[3] = 0xa54ff53a; vars_[4] = 0x510e527f; vars_[5] = 0x9b05688c; vars_[6] = 0x1f83d9ab; vars_[7] = 0x5be0cd19; for(size_t i = 0; i < length; ++i) { message_[message_l_++] = data[i]; if(message_l_ == 64) { transform(); bit_len_ += 512; message_l_ = 0; } } } hmacsha256::SHA256::~SHA256() { delete digest_; } hmacsha256::SHA256::SHA256(const std::string& data) { init(reinterpret_cast (data.c_str()), data.size()); } uint8_t* hmacsha256::SHA256::digest() { uint8_t* hash = new uint8_t[32]; pad(); bigendian(hash); for(uint32_t i = 0; i < 32; ++i) { digest_[i] = hash[i]; } return hash; } std::string hmacsha256::SHA256::hexdigest() { std::stringstream s; s << std::setfill('0') << std::hex; for(uint8_t i = 0 ; i < 32 ; i++) { s << std::setw(2) << (unsigned int) digest_[i]; } return s.str(); } uint32_t hmacsha256::SHA256::ch(uint32_t x, uint32_t y, uint32_t z) { return (x & y) ^ (~x & z); } uint32_t hmacsha256::SHA256::maj(uint32_t x, uint32_t y, uint32_t z) { return (x & (y | z)) | (y & z); } uint32_t hmacsha256::SHA256::rotr(uint32_t x, uint32_t n) { return (x >> n) | (x << (32-n)); } uint32_t hmacsha256::SHA256::big_sigma0(uint32_t x) { return SHA256::rotr(x, 2) ^ SHA256::rotr(x, 13) ^ SHA256::rotr(x, 22); } uint32_t hmacsha256::SHA256::big_sigma1(uint32_t x) { return SHA256::rotr(x, 6) ^ SHA256::rotr(x, 11) ^ SHA256::rotr(x, 25); } uint32_t hmacsha256::SHA256::sigma0(uint32_t x) { return SHA256::rotr(x, 7) ^ SHA256::rotr(x, 18) ^ (x >> 3); } uint32_t hmacsha256::SHA256::sigma1(uint32_t x) { return SHA256::rotr(x, 17) ^ SHA256::rotr(x, 19) ^ (x >> 10); } void hmacsha256::SHA256::transform() { uint32_t m[64]; uint32_t h[8]; for(uint8_t i = 0, j = 0; i < 16; ++i, j += 4) { m[i] = (message_[j] << 24) | (message_[j + 1] << 16) | (message_[j + 2] << 8) | (message_[j + 3]); } for(uint8_t i = 16; i < 64; ++i) { m[i] = SHA256::sigma1(m[i - 2]) + m[i - 7] + SHA256::sigma0(m[i - 15]) + m[i - 16]; } for(uint8_t i = 0; i < 8; ++i) h[i] = vars_[i]; for(uint8_t i = 0; i < 64; ++i) { auto S1 = SHA256::big_sigma1(h[4]); auto S0 = SHA256::big_sigma0(h[0]); auto t1 = h[7] + S1 + SHA256::ch(h[4], h[5], h[6]) + K[i] + m[i]; auto t2 = S0 + SHA256::maj(h[0], h[1], h[2]); h[7] = h[6]; h[6] = h[5]; h[5] = h[4]; h[4] = h[3] + t1; h[3] = h[2]; h[2] = h[1]; h[1] = h[0]; h[0] = t1 + t2; } for(uint8_t i = 0; i < 8; ++i) { vars_[i]+=h[i]; } } void hmacsha256::SHA256::pad() { // start of scanning uint64_t i = message_l_; // end of scanning uint8_t j = (i < 56) ? 56 : 64; // append '1' bit at the end of the block message_[i++] = 0x80; // append '0' bit, j times while(i < j) message_[i++] = 0x00; if(message_l_ >= 56) { transform(); memset(message_, 0, 56); } bit_len_ += message_l_ * 8; message_[63] = bit_len_; message_[62] = bit_len_ >> 8; message_[61] = bit_len_ >> 16; message_[60] = bit_len_ >> 24; message_[59] = bit_len_ >> 32; message_[58] = bit_len_ >> 40; message_[57] = bit_len_ >> 48; message_[56] = bit_len_ >> 56; transform(); } void hmacsha256::SHA256::bigendian(uint8_t* hash) { for (uint32_t i = 0; i < 4; ++i) { hash[i] = (vars_[0] >> (24 - i * 8)) & 0x000000ff; hash[i + 4] = (vars_[1] >> (24 - i * 8)) & 0x000000ff; hash[i + 8] = (vars_[2] >> (24 - i * 8)) & 0x000000ff; hash[i + 12] = (vars_[3] >> (24 - i * 8)) & 0x000000ff; hash[i + 16] = (vars_[4] >> (24 - i * 8)) & 0x000000ff; hash[i + 20] = (vars_[5] >> (24 - i * 8)) & 0x000000ff; hash[i + 24] = (vars_[6] >> (24 - i * 8)) & 0x000000ff; hash[i + 28] = (vars_[7] >> (24 - i * 8)) & 0x000000ff; } }