summaryrefslogtreecommitdiffstats
path: root/benches/bigfile.rs
blob: b2b013ddef12e5fce1b45c9417ff63d8fd918b1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
use criterion::{Criterion, criterion_group, criterion_main};
use mt_rs::{
    hasher::{Blake3Hasher, Hasher, Keccak256Hasher, SHA256Hasher},
    merkletree::MerkleTree,
    proof::{DefaultProofer, Proofer},
};
use rand::{RngCore, rngs::OsRng};
use std::fs::{self, File};
use std::io::{BufWriter, Write};
use std::path::Path;

// Create files `filenames` with random data with a size of `size` MB.
fn setup_files(filenames: &Vec<String>, size: usize) -> std::io::Result<Vec<Vec<u8>>> {
    for filename in filenames.iter() {
        if !Path::new(filename).exists() {
            let file = File::create(filename)?;
            let mut writer = BufWriter::new(file);

            let mut buffer = vec![0u8; 1024 * 1024]; // 1 MB buffer

            // 1 MB * size = total bytes
            for _ in 0..size {
                // Fill buffer with random bytes
                OsRng.fill_bytes(&mut buffer);
                writer.write_all(&buffer)?;
            }

            writer.flush()?;
        }
    }

    let files: Vec<Vec<u8>> = filenames
        .iter()
        .map(|filename| fs::read(filename).expect("file not found"))
        .collect();

    Ok(files)
}

fn cleanup_files(filenames: &Vec<String>) -> std::io::Result<()> {
    for filename in filenames.iter() {
        if Path::new(filename).exists() {
            fs::remove_file(filename)?;
        }
    }
    Ok(())
}

fn test_merkle_tree<H: Hasher + Clone + 'static>(hasher: H, files: &Vec<Vec<u8>>) {
    let tree = MerkleTree::new(hasher.clone(), files);
    let proofer = DefaultProofer::new(&hasher, tree.leaves().clone());
    let root = tree.root();
    let root_hash = root.hash();

    for i in 0..files.len() {
        let proof = proofer.generate(i).expect("proof generation failed");
        assert!(proofer.verify(&proof, &files[i], root_hash, &hasher));
    }
}

/// Example of a MarkleTree with 10 nodes which use SHA256 algorithm to make hashes.
/// Each node has a size of 5, 10 or 15 MB.
/// Also, it verifies each node path with a proofer O(n).
fn bench_large_merkle_tree_sha256(c: &mut Criterion) {
    let filenames: Vec<String> = (1..=10).map(|i| format!("file-{i}.dat")).collect();

    let mut group = c.benchmark_group("MerkleTree");
    group.sample_size(10);
    for size in [5, 10, 15] {
        group.bench_function(
            format!("MerkleTree creation and validation with 10 nodes and SHA256 algorithm. {size} MB per each file."),
            |b| {
                let files = setup_files(&filenames, size).expect("failed to allocate new files");

                b.iter(|| {
                    let hasher = SHA256Hasher::new();
                    test_merkle_tree(hasher, &files);
                });
                cleanup_files(&filenames).expect("failed to deallocate data");
            },
        );
    }
    group.finish();
}

/// Example of a MarkleTree with 10 nodes which use Keccak256 algorithm to make hashes.
/// Each node has a size of 5, 10 or 15 MB.
/// Also, it verifies each node path with a proofer O(n).
fn bench_large_merkle_tree_keccak256(c: &mut Criterion) {
    let filenames: Vec<String> = (1..=10).map(|i| format!("file-{i}.dat")).collect();

    let mut group = c.benchmark_group("MerkleTree");
    group.sample_size(10);
    for size in [5, 10, 15] {
        group.bench_function(
            format!("MerkleTree creation and validation with 10 nodes and Keccak256 algorithm. {size} MB per each file."),
            |b| {
                let files = setup_files(&filenames, size).expect("failed to allocate new files");

                b.iter(|| {
                    let hasher = Keccak256Hasher::new();
                    test_merkle_tree(hasher, &files);
                });
                cleanup_files(&filenames).expect("failed to deallocate data");
            },
        );
    }
    group.finish();
}

/// Example of a MarkleTree with 10 nodes which use Blake3 algorithm to make hashes.
/// Each node has a size of 5, 10 or 15 MB.
/// Also, it verifies each node path with a proofer O(n).
fn bench_large_merkle_tree_blake3(c: &mut Criterion) {
    let filenames: Vec<String> = (1..=10).map(|i| format!("file-{i}.dat")).collect();

    let mut group = c.benchmark_group("MerkleTree");
    group.sample_size(10);
    for size in [5, 10, 15] {
        group.bench_function(
            format!("MerkleTree creation and validation with 10 nodes and Keccak256 algorithm. {size} MB per each file."),
            |b| {
                let files = setup_files(&filenames, size).expect("failed to allocate new files");

                b.iter(|| {
                    let hasher = Blake3Hasher::new();
                    test_merkle_tree(hasher, &files);
                });
                cleanup_files(&filenames).expect("failed to deallocate data");
            },
        );
    }
    group.finish();
}

criterion_group!(
    benches,
    bench_large_merkle_tree_sha256,
    bench_large_merkle_tree_keccak256,
    bench_large_merkle_tree_blake3
);
criterion_main!(benches);