1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
//! Provides the MerkleTree structure and associated methods for creating and interacting
//! with binary Merkle trees using custom hashers.
use crate::{hasher::Hasher, merkle::node::Node};
/// A binary Merkle tree implementation.
///
/// Merkle trees are hash-based data structures used for secure and efficient data verification.
/// Each leaf node contains the hash of a data item, and each internal node contains the hash
/// of the concatenation of its children's hashes.
#[derive(Debug)]
pub struct MerkleTree {
/// Leaf nodes at the base of the tree (may include a duplicate for even pairing).
leaves: Vec<Node>,
/// Height of the tree (number of levels including root).
height: usize,
/// Root node of the Merkle tree.
root: Node,
}
impl MerkleTree {
/// Creates a new `MerkleTree` from a collection of data items and a hash function.
///
/// # Arguments
///
/// * `hasher` - A reference to an implementation of the `Hasher` trait.
/// * `data` - A vector of values to be converted into leaf nodes.
///
/// # Panics
///
/// Panics if the `data` vector is empty.
///
/// # Notes
///
/// If the number of leaf nodes is odd, the last node is duplicated to ensure all internal
/// nodes have exactly two children.
pub fn new<I, T>(hasher: &dyn Hasher, data: I) -> Self
where
I: IntoIterator<Item = T>,
T: AsRef<[u8]>,
{
let owned_data: Vec<T> = data.into_iter().collect();
let data_slices: Vec<&[u8]> = owned_data.iter().map(|item| item.as_ref()).collect();
assert!(
!data_slices.is_empty(),
"Merkle Tree requires at least one element"
);
let mut leaves: Vec<Node> = data_slices
.iter()
.map(|x| Node::new_leaf(hasher, x))
.collect();
if leaves.len() % 2 != 0 {
leaves.push(leaves[leaves.len() - 1].clone());
}
Self::build(hasher, leaves)
}
/// Constructs the internal nodes of the tree from the leaves upward and computes the root.
fn build(hasher: &dyn Hasher, mut nodes: Vec<Node>) -> Self {
let leaves = nodes.clone();
let mut height = 0;
while nodes.len() > 1 {
if nodes.len() % 2 != 0 {
// duplicate last node to make the count even
nodes.push(nodes[nodes.len() - 1].clone());
}
let mut next_level = Vec::new();
for pair in nodes.chunks(2) {
let (left, right) = (pair[0].clone(), pair[1].clone());
next_level.push(Node::new_internal(hasher, left, right));
}
nodes = next_level;
height += 1;
}
let root = nodes.remove(0);
MerkleTree {
leaves,
height: height + 1,
root,
}
}
/// Returns the height (number of levels) of the tree.
pub fn height(&self) -> usize {
self.height
}
/// Returns true if the tree has no leaves (should never happen if `new()` was used).
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the number of leaf nodes in the tree.
pub fn len(&self) -> usize {
self.leaves.len()
}
/// Returns the root node of the tree.
pub fn root(&self) -> Node {
self.root.clone()
}
}
|