1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
#include "stm32_unict_lib.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
int tmax;
typedef enum {
SETUP,
RUN
} status_t;
status_t status = RUN;
float real_root = 0;
float new_want_root = 0;
float want_root = 180;
double rotation = 1;
void
init()
{
GPIO_init(GPIOB);
GPIO_init(GPIOC);
GPIO_config_input(GPIOB, 10); /* X */
GPIO_config_EXTI(GPIOB, EXTI10);
EXTI_enable(EXTI10, FALLING_EDGE);
GPIO_config_input(GPIOB, 4); /* Y */
GPIO_config_EXTI(GPIOB, EXTI4);
EXTI_enable(EXTI4, FALLING_EDGE);
GPIO_config_output(GPIOB, 0); /* LED RED */
GPIO_config_output(GPIOC, 3); /* LED GREEN */
TIM_init(TIM2);
TIM_set(TIM2, 0);
TIM_on(TIM2);
TIM_config_timebase(TIM2, 8400, 100);
TIM_enable_irq(TIM2, IRQ_UPDATE);
ADC_init(ADC1, ADC_RES_12, ADC_ALIGN_RIGHT);
ADC_channel_config(ADC1, GPIOC, 1, 11);
ADC_channel_config(ADC1, GPIOC, 0, 10);
ADC_on(ADC1);
DISPLAY_init();
CONSOLE_init();
}
int
main()
{
init();
char s[5];
srand(time(NULL));
for (;;) {
if (status == RUN) {
ADC_sample_channel(ADC1, 10);
ADC_start(ADC1);
while (!ADC_completed(ADC1))
;
float adc_read = ADC_read(ADC1);
adc_read = (2 * adc_read) / 4095;
real_root -= ((adc_read * 2) * (1.0 * rand()) / RAND_MAX - adc_read);
if (real_root > 180)
real_root = 180;
else if (real_root < -180)
real_root = -180;
printf("%f %f %f\n", rotation, real_root, want_root);
sprintf(s, "%f", real_root);
DISPLAY_puts(0, s);
delay_ms(500);
} else {
ADC_sample_channel(ADC1, 11);
ADC_start(ADC1);
while (!ADC_completed(ADC1))
;
float adc_read = ADC_read(ADC1);
new_want_root = (((180 + 180) * adc_read) / 4095) - 180;
sprintf(s, "%f", new_want_root);
DISPLAY_puts(0, s);
delay_ms(500);
}
}
return 0;
}
void
EXTI4_IRQHandler(void)
{
if (EXTI_isset(EXTI4)) {
if (status == SETUP) {
status = RUN;
want_root = new_want_root;
GPIO_write(GPIOB, 0, 0);
}
EXTI_clear(EXTI4);
}
}
void
EXTI15_10_IRQHandler(void)
{
if (EXTI_isset(EXTI10)) {
if (status == RUN) {
status = SETUP;
GPIO_write(GPIOB, 0, 1);
} else {
status = RUN;
GPIO_write(GPIOB, 0, 0);
}
EXTI_clear(EXTI10);
}
}
void
TIM2_IRQHandler(void)
{
if (TIM_update_check(TIM2)) {
rotation = (want_root - real_root) * 0.08;
if (rotation < -10) {
rotation = -10;
} else if (rotation > 10) {
rotation = 10;
}
real_root = real_root + rotation * 0.04;
if (real_root < -180) {
real_root = -180;
} else {
real_root = 180;
}
if (abs(want_root - real_root) <= 2) {
GPIO_write(GPIOC, 3, 1);
} else {
GPIO_write(GPIOC, 3, 0);
}
TIM_update_clear(TIM2);
}
}
|