1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
/* Run minicom -D /dev/ttyACM0 -b 9600 */
#include "stm32_unict_lib.h"
#include <stdio.h>
/* Slide 3/13 */
struct t_tx_state {
uint8_t data;
int bit_count;
int start;
} tx_state;
/*
* 9600 interruputs per seconds
* 84e6/9600 = 8750
*/
void
init_periph()
{
GPIO_init(GPIOA);
GPIO_config_output(GPIOA, 2);
GPIO_write(GPIOA, 2, 1);
TIM_init(TIM2);
TIM_config_timebase(TIM2, 1, 8750);
TIM_set(TIM2, 0);
TIM_on(TIM2);
TIM_enable_irq(TIM2, IRQ_UPDATE);
tx_state.start = 0;
tx_state.bit_count = 0;
}
void
send_byte(uint8_t c)
{
/* First wait the end of the trasmission */
while (tx_state.start == 1) { }
tx_state.data = c;
tx_state.start = 1;
tx_state.bit_count = 0;
}
/*int
__io_putchar(int ch)
{
send_byte(ch);
return 0;
}*/
int
main()
{
init_periph();
for (;;) {
/* Using a `printf()` here means you must overwrite the `__io_putchar()` in `console.c`. */
// printf("Hello world\n\r");
send_byte('A');
delay_ms(100);
}
return 0;
}
void
TIM2_IRQHandler(void)
{
if (TIM_update_check(TIM2)) {
if (tx_state.start) {
switch (tx_state.bit_count) {
case 0:
GPIO_write(GPIOA, 2, 0);
break;
case 9:
case 10:
GPIO_write(GPIOA, 2, 1);
break;
default:
/* Data bit */
GPIO_write(GPIOA, 2, tx_state.data & 1); // TX B0
tx_state.data >>= 1;
}
tx_state.bit_count++;
if (tx_state.bit_count == 11) {
tx_state.start = 0;
}
}
TIM_update_clear(TIM2);
}
}
|