diff options
author | Santo Cariotti <santo@dcariotti.me> | 2024-06-02 13:10:13 +0200 |
---|---|---|
committer | Santo Cariotti <santo@dcariotti.me> | 2024-06-02 13:10:13 +0200 |
commit | 5c623ef8da6c995855b9f100bb5f8efa718da49c (patch) | |
tree | 224bb52d02785f493c581a3fa55d82f17fb8e119 |
initmain
-rw-r--r-- | conclusion.tex | 6 | ||||
-rw-r--r-- | content.tex | 10 | ||||
-rw-r--r-- | k8s.tex | 37 | ||||
-rw-r--r-- | main.tex | 36 | ||||
-rw-r--r-- | refs.tex | 11 | ||||
-rw-r--r-- | serverless.tex | 78 | ||||
-rw-r--r-- | static/11227_2022_4430_Fig1_HTML.jpg | bin | 0 -> 51532 bytes | |||
-rw-r--r-- | static/11227_2022_4430_Fig2_HTML.jpg | bin | 0 -> 42472 bytes | |||
-rw-r--r-- | static/11227_2022_4430_Fig5_HTML.jpg | bin | 0 -> 347058 bytes | |||
-rw-r--r-- | static/11227_2022_4430_Fig6_HTML.jpg | bin | 0 -> 346995 bytes | |||
-rw-r--r-- | static/11227_2022_4430_Fig8_HTML.jpg | bin | 0 -> 131703 bytes | |||
-rw-r--r-- | static/Kubernetes_logo_without_workmark.svg.png | bin | 0 -> 14851 bytes | |||
-rw-r--r-- | static/Untitled-2023-09-27-1503(3).png | bin | 0 -> 798293 bytes | |||
-rw-r--r-- | static/Untitled-2023-09-27-1503(4).png | bin | 0 -> 205152 bytes | |||
-rw-r--r-- | tests.tex | 151 |
15 files changed, 329 insertions, 0 deletions
diff --git a/conclusion.tex b/conclusion.tex new file mode 100644 index 0000000..53141cc --- /dev/null +++ b/conclusion.tex @@ -0,0 +1,6 @@ +\begin{frame}{Conclusion} +\begin{itemize} + \item Kubespray takes longer to instantiate new function instances. + \item K3s and MicroK8s, removing unnecessary components, have reduced the deployment time and complexity, improving performance for the majority of serverless edge workloads. \pause \textbf{\alert{We can say that they are comparable.}} +\end{itemize} +\end{frame}
\ No newline at end of file diff --git a/content.tex b/content.tex new file mode 100644 index 0000000..0b2b574 --- /dev/null +++ b/content.tex @@ -0,0 +1,10 @@ +\begin{frame}{Content} + +\begin{enumerate} + \item<1-> What is Kubernetes? + \item<2-> What is Serverless? + \item<3-> How can we combine both? + \item<4-> Which K8s distribution is more efficient for serveless development? +\end{enumerate} + +\end{frame}
\ No newline at end of file @@ -0,0 +1,37 @@ +% -------- Frame 1 ------ +\begin{frame}{Kubernetes} +\begin{figure} + \centering + \includegraphics[width=0.2\linewidth]{static/Kubernetes_logo_without_workmark.svg.png} +\end{figure} + The development was started by Google in 2014, but is now developed by Cloud Native Computing Foundation. +It is the most widely used container orchestrator. + +\end{frame} + +% -------- Frame 2 ------ +\begin{frame}{Kubernetes: Architecture} + +\begin{figure} + \centering + \includegraphics[width=1\linewidth]{static/Untitled-2023-09-27-1503(3).png} +\end{figure} + +\begin{itemize} + \item<2-> Something a bit less complex? +\end{itemize} + +\end{frame} + +% -------- Frame 3 ------ +\begin{frame}{Kubernetes: Distributions} + +There are a lot of distributions of K8s such as: + +\begin{itemize} + \item Kubespray \uncover<2->{\alert{\textit{It uses a set of Ansible playbooks}}} + \item K3s \uncover<3->{\alert{\textit{Lightweight packaged as a single binary}}} + \item MicroK8s \uncover<4->{\alert{\textit{It works on any GNU/Linux distributions using Snap package manager}}} +\end{itemize} + +\end{frame} diff --git a/main.tex b/main.tex new file mode 100644 index 0000000..401f8fe --- /dev/null +++ b/main.tex @@ -0,0 +1,36 @@ +\documentclass{beamer} +\usepackage{tikz} +\usetheme{Copenhagen} +\usecolortheme{beaver} + +\setbeamertemplate{footline} +{ + \leavevmode% + \hbox{% + \begin{beamercolorbox}[wd=.9\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}% + \end{beamercolorbox}% + \begin{beamercolorbox}[wd=.1\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}% + \insertframenumber{} / \inserttotalframenumber + \end{beamercolorbox}}% + \vskip0pt% +} + +\title[Kubernetes distributions for the edge: serverless performance evaluation]{Kubernetes distributions for the edge: serverless performance evaluation \footnotesize{[1]}} +\author[]{Santo Cariotti} + +\date[]{University of Bologna, 2024-06-17} + +\begin{document} +\frame{\titlepage} + +\input{content} +\input{k8s} +\input{serverless} +\input{tests} +\input{conclusion} + + +\input{refs} + + +\end{document}
\ No newline at end of file diff --git a/refs.tex b/refs.tex new file mode 100644 index 0000000..9845780 --- /dev/null +++ b/refs.tex @@ -0,0 +1,11 @@ +\begin{frame}{References} + +\begin{itemize} + \item {[1]} Kjorveziroski, V. and Filiposka, S., 2022. Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing, 78(11), pp.13728-13755. + \item {[2]} Kjorveziroski, V., Bernad Canto, C., Juan Roig, P., Gilly, K., Mishev, A., Trajkovikj, V. and Filiposka, S., 2021. IoT serverless computing at the edge: Open issues and research direction. Transactions on Networks and Communications. + \item {[3]} https://prometheus.io + \item {[4]} Kim, J. and Lee, K., 2019, July. Functionbench: A suite of workloads for serverless cloud function service. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD) (pp. 502-504). IEEE. + +\end{itemize} + +\end{frame}
\ No newline at end of file diff --git a/serverless.tex b/serverless.tex new file mode 100644 index 0000000..be78b6f --- /dev/null +++ b/serverless.tex @@ -0,0 +1,78 @@ +% -------------------- frame 1 ------------------- +\begin{frame}{Serverless} + +\begin{itemize} +\item<1-> Serverless computing abstracts the underlying infrastructure, focusing solely on the logic that needs to be performed to solve a given task. + +\item<2-> A developer just write a function using their favourite programming language and put it online. + +\item<3-> A new concept of Function-as-a-Service. + +\item<4-> Edge computing is recommended by setting up compute infrastructure closer to the data source. + +\item<5-> It is a new frontier for IoT computing [2]. + +\end{itemize} + +\end{frame} + +% ----------------- frame 2 ---------------- + +\begin{frame}{Serverless architecture} + \begin{figure} + \centering + \includegraphics[width=1\linewidth]{static/Untitled-2023-09-27-1503(4).png} + \end{figure} +\end{frame} + +% ------------------ frame 3 --------------------- +\begin{frame}{Serverless platforms} + +There is a new market for serverless platforms, both open and closed source. + +\begin{itemize} + \item AWS Lambda + \item OpenWhisk + \item Kubeless + \item Knative + \item OpenFaaS +\end{itemize} + +\end{frame} + +% ------------------ frame 3 --------------------- +\begin{frame}{Serverless platforms} + +There is a new market for serverless platforms, both open and closed source. + +\begin{itemize} + \item AWS Lambda + \item OpenWhisk + \item Kubeless + \item Knative + \item OpenFaaS \alert{\textit{we chose this one!}} +\end{itemize} + +\end{frame} + +% ---------------- frame 4 ---------------------- +\begin{frame}{OpenFaaS} + +Its architecture is composed by: + +\begin{itemize} + \item API Gateway + \item Prometheus [3] + \item Watchdog + \item Docker Swarm or Kubernetes + \item Docker +\end{itemize} + +It supports two different function scaling modes: + +\begin{itemize} + \item Native scaling based on internal customized metrics + \item Kubernetes Horizontal Pod Autoscaler (HPA) +\end{itemize} + +\end{frame}
\ No newline at end of file diff --git a/static/11227_2022_4430_Fig1_HTML.jpg b/static/11227_2022_4430_Fig1_HTML.jpg Binary files differnew file mode 100644 index 0000000..cef5472 --- /dev/null +++ b/static/11227_2022_4430_Fig1_HTML.jpg diff --git a/static/11227_2022_4430_Fig2_HTML.jpg b/static/11227_2022_4430_Fig2_HTML.jpg Binary files differnew file mode 100644 index 0000000..42b45e0 --- /dev/null +++ b/static/11227_2022_4430_Fig2_HTML.jpg diff --git a/static/11227_2022_4430_Fig5_HTML.jpg b/static/11227_2022_4430_Fig5_HTML.jpg Binary files differnew file mode 100644 index 0000000..9d4ce57 --- /dev/null +++ b/static/11227_2022_4430_Fig5_HTML.jpg diff --git a/static/11227_2022_4430_Fig6_HTML.jpg b/static/11227_2022_4430_Fig6_HTML.jpg Binary files differnew file mode 100644 index 0000000..c214a63 --- /dev/null +++ b/static/11227_2022_4430_Fig6_HTML.jpg diff --git a/static/11227_2022_4430_Fig8_HTML.jpg b/static/11227_2022_4430_Fig8_HTML.jpg Binary files differnew file mode 100644 index 0000000..6cd8d73 --- /dev/null +++ b/static/11227_2022_4430_Fig8_HTML.jpg diff --git a/static/Kubernetes_logo_without_workmark.svg.png b/static/Kubernetes_logo_without_workmark.svg.png Binary files differnew file mode 100644 index 0000000..1a2f54a --- /dev/null +++ b/static/Kubernetes_logo_without_workmark.svg.png diff --git a/static/Untitled-2023-09-27-1503(3).png b/static/Untitled-2023-09-27-1503(3).png Binary files differnew file mode 100644 index 0000000..eb915fe --- /dev/null +++ b/static/Untitled-2023-09-27-1503(3).png diff --git a/static/Untitled-2023-09-27-1503(4).png b/static/Untitled-2023-09-27-1503(4).png Binary files differnew file mode 100644 index 0000000..4d5d48d --- /dev/null +++ b/static/Untitled-2023-09-27-1503(4).png diff --git a/tests.tex b/tests.tex new file mode 100644 index 0000000..a7dd0d4 --- /dev/null +++ b/tests.tex @@ -0,0 +1,151 @@ +% -- frame 1--- +\begin{frame}{Set up the testing machine} +\begin{itemize} + \item Ubuntu 20.04 + \item CPU Intel Xeon X5647 + \item 8 GB RAM + \item 1 Gbps + \item Kubernetes 1.20.7 and 1.23.0 + \item OpenFaaS 0.21.1 + \item 1 master node + \item Calico as CNI + \item Longhorn for persistent volumes + \item Docker Engine as CRI \pause \textit{\alert{dockershim is no longer supported after 1.24}} + +\end{itemize} + +\end{frame} + +% -- frame 2-- +\begin{frame}{Choose the testing functions} +Let's choose 14 tests from the FunctionBench serverless benchmarking suite [4]. + +\begin{itemize} + \item 8 from CPU \& Memory category. + \item 4 from Disk I/O category. + \item 2 from Network performance category. +\end{itemize} + +\end{frame} + +% --- frame 3 --- +\begin{frame}{How do we run?} + +5 tests for each Kubernetes distribution. Executed using the recommended OpenFaaS of-watchdog template for Python 3.7. + +\end{frame} + +% -- frame 4 -- +\begin{frame}{Cold start performance} +Each function is executed 100 times to test the cold start delay. \pause +After every execution, the number of instances for the function is scaled to 0. A new container instance needs to be created before a response is returned. +\end{frame} + +% -- frame 5 -- +\begin{frame}{Cold start performance — Results} +Kubespray exhibits a 15\% increase compared to both K3s and MicroK8s. + +\begin{figure} + \includegraphics[width=0.5\linewidth]{static/11227_2022_4430_Fig1_HTML.jpg}\hfill + \includegraphics[width=0.5\linewidth]{static/11227_2022_4430_Fig2_HTML.jpg} +\end{figure} + +\end{frame} + +% -- frame 6 -- +\begin{frame}{Cold start performance — Results} +Is the performance difference between K3s and MicroK8s statistically significant? +\pause + +Using a Mann-Whitney U test with \(\alpha = 0.05\) and +\begin{itemize} + \item H0: the two populations are equal + \item H0: the two populations are not equal +\end{itemize} + +we have a \(p\)-value = 0.202, so we can't reject the null hypothesis. + +\end{frame} + +% -- frame 7 -- +\begin{frame}{Serial execution performance} +Each function is continuously invoked for a period of 5 min using a single thread. Once a response is received, a new request is immediately sent. Auto-scaling is manually disabled. +\end{frame} + +% -- frame 8 -- +\begin{frame}{Serial execution performance — Results} +Once again, Kubespray results are slower than both K3s and MicroK8s. + +\begin{figure} + \centering + \includegraphics[width=0.6\linewidth]{static/11227_2022_4430_Fig5_HTML.jpg} +\end{figure} +\end{frame} + +% -- frame 9 -- +\begin{frame}{Serial execution performance — Results} +Is the performance difference between K3s and MicroK8s statistically significant? +\pause + +Using a Kruskal-Wallis test with \(\alpha = 0.05\) and +\begin{itemize} + \item H0: the population medians are equal + \item H0: the population medians are not equal +\end{itemize} + +where the null hypothesis failed to be rejected for the video-processing test. Keeping the same hypothesis we can perform the Mann-Whitney U test where, this time, the null hypothesis is rejected in 10 of the 14 tests. The null hypothesis can't be rejected for 3 CPU and 1 network benchmarks. +\end{frame} + +% -- frame 10 -- +\begin{frame}{Parallel execution performance using a single replica} +Each function is invoked for a fixed amount of time using varying concurrency to determine the performance of the auto-scaling behavior. \textit{Reduced isolation.} +\end{frame} + + +% -- frame 11 -- +\begin{frame}{Parallel execution performance using a single replica — Results} +This time Kubespray has better performance than both K3s and MicroK8s for 6 of the 14 tests. + +\begin{figure} + \centering + \includegraphics[width=0.5\linewidth]{static/11227_2022_4430_Fig6_HTML.jpg} +\end{figure} +\end{frame} + +% -- frame 12 -- +\begin{frame}{Parallel execution using native OpenFaaS auto scaling} +Each function is invoked for a fixed amount of time using varying concurrency to determine the performance of the auto-scaling behavior. +\pause +It tests the number of successful invocations per second for the last 10 seconds: if the number is larger than 5, it scales up the number of function instances up to a preconfigured maximum. +\end{frame} + + +% -- frame 13 -- +\begin{frame}{Parallel execution using native OpenFaaS auto scaling — Results} +Performances are tests by 1 request per second from 6 concurrent workers for more than 200 seconds, successfully reaching the defined threshold for the maximum number of replicas. +The current number of deployed replicas are not taken but this leads to suboptimal scaling decision scaling to maximum number of configured replicas or not scaling at all under a consistent load. +\end{frame} + + +% -- frame 14 -- +\begin{frame}{Parallel execution using Kubernetes Horizonal Pod Autoscaler} +Each function is invoked as the same way as the previous test using the Kubernetes native mechanism. For this test, HPA is configured with a profile which is fired whenever the float-operation function has used more than 350 CPU shares (0.35 of a core). \pause +We find out results for three different execution strategy: + +\begin{itemize} + \item Start from 1 replica, execute 2 concurrent req/s, increasing the concurrency rate by 2 every 5 min, until 48 req/s are achieved. + \item Start from 1 replica, execute 40 concurrent req/s, decreasing the concurrency rate by 2 every 5 min, until 2 req/s are achieved. + \item Start from 1 replica and vary the number of concurrent requests every 5 min using the strategy 8, 1, 20, 4, 40, 24, 1, 4, 16, 1, 36, 32. +\end{itemize} +\end{frame} + + +% -- frame 15 -- +\begin{frame}{Parallel execution using Kubernetes Horizonal Pod Autoscaler — Results} +Kubespray exhibits higher response times across the three tests, while the results obtained from K3S and MicroK8s are similar. + +\begin{figure} + \centering + \includegraphics[width=1\linewidth]{static/11227_2022_4430_Fig8_HTML.jpg} +\end{figure} +\end{frame} |